On the Hausdorff Distance Between Compact Subsets1
نویسنده
چکیده
In [2] the pseudo-metric distmax min on compact subsets A and B of a topological space generated from arbitrary metric space is defined. Using this notion we define the Hausdorff distance (see e.g. [6]) of A and B as a maximum of the two pseudo-distances: from A to B and from B to A. We justify its distance properties. At the end we define some special notions which enable to apply the Hausdorff distance operator “HausDist” to the subsets of the Euclidean topological space En T .
منابع مشابه
On the Hausdorff Distance Between Compact Subsets
In [1] the pseudo-metric dist min on compact subsets A and B of a topological space generated from arbitrary metric space is defined. Using this notion we define the Hausdorff distance (see e.g. [5]) of A and B as a maximum of the two pseudo-distances: from A to B and from B to A. We justify its distance properties. At the end we define some special notions which enable to apply the Hausdorff d...
متن کاملC∗-algebraic Quantum Gromov-hausdorff Distance
We introduce a new quantum Gromov-Hausdorff distance between C∗-algebraic compact quantum metric spaces. Because it is able to distinguish algebraic structures, this new distance fixes a weakness of Rieffel’s quantum distance. We show that this new quantum distance has properties analogous to the basic properties of the classical Gromov-Hausdorff distance, and we give criteria for when a parame...
متن کاملA Note on Gromov-hausdorff-prokhorov Distance between (locally) Compact Measure Spaces
We present an extension of the Gromov-Hausdorff metric on the set of compact metric spaces: the Gromov-Hausdorff-Prokhorov metric on the set of compact metric spaces endowed with a finite measure. We then extend it to the non-compact case by describing a metric on the set of rooted complete locally compact length spaces endowed with a locally finite measure. We prove that this space with the ex...
متن کاملA note on the Gromov - Hausdorff - Prokhorov distance between ( locally ) compact metric measure spaces ∗
We present an extension of the Gromov-Hausdorff metric on the set of compact metric spaces: the Gromov-Hausdorff-Prokhorov metric on the set of compact metric spaces endowed with a finite measure. We then extend it to the non-compact case by describing a metric on the set of rooted complete locally compact length spaces endowed with a boundedly finite measure. We prove that this space with the ...
متن کاملA new view on fuzzy automata normed linear structure spaces
In this paper, the concept of fuzzy automata normed linear structure spaces is introduced and suitable examples are provided. ;The ;concepts of fuzzy automata $alpha$-open sphere, fuzzy automata $mathscr{N}$-locally compact spaces, fuzzy automata $mathscr{N}$-Hausdorff spaces are also discussed. Some properties related with to fuzzy automata normed linear structure spaces and fuzzy automata $ma...
متن کامل